where $C \gg 1$. For certain fuels we may take $C=\infty$, and then Eq. (2) simplifies; the terms containing y_{2} vanish.

By way of example, Table 1 gives the approximation coefficients for $\mathrm{O}_{2}-\mathrm{H}_{2}$ fuel and four values of the excess coefficient of the oxidizing agent. The quantities in this table were determined by the well-known method employed for the analytical representation of empirical data [6]. In the present example $C=\infty$.

The results of our determination of ξ_{n} for oxygen - hydrogen fuel with $\alpha=1$ and $r_{a} / r_{c r}=10$ by means of Eq. (2) and also by numerical integration of the problem are presented in Fig. 1. These data, together with the results of analogous calculations carried out for $\mathrm{pk}_{\mathrm{k}}=0.5-25 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{r}_{\mathrm{cr}}=(2.5-125) 10^{-3} \mathrm{~m}$ and r_{a} / $r_{c r}=3-15$ in the case of fuels containing hydrogen, carbon, nitrogen, oxygen, and fluorine, show that the maximum error in the determination of losses due to the lack of chemical equilibrium in the flow through the nozzle by means of the proposed approximate equation equals ± 0.002. Such an error in ξ_{n} introduces an error not exceeding 0.2% into the determination of the specific momentum.

NOTATION

ξ_{n}, loss coefficient of the specific momentum due to the lack of chemical equilibrium in the flow; $r_{c r}$, radius of critical nozzle cross section; r_{a}, radius of nozzle outlet section; pk_{k}, flow retardation pressure; p_{0}, normal pressure; h, relaxation coefficient; ξ_{0}, m, n, s, C, dimensionless coefficients; α, excess coefficient of oxidizing agent.

LITERATURE CITED

1. V.E. Alemas ov et al., Thermodynamic and Thermophysical Products of Combustion Products [in Russian], Vols. 1-4, VINITI, Akad. Nauk SSSR, Moscow (1971-1974).
2. V. M. Khailov, Chemical Relaxation in the Jets of Jet Engines [in Russian], Mashinostroenie, Moseow (1975).
3. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press (1959).
4. V. N. Kondrat'ev, Velocity Constants of Gas Reactions [in Russian], Nauka, Moscow (1970).
5. V. N. Kamzolov and U. G. Pirumov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 25 (1966).
6. N. Draper and H. Smith, Applied Regression Analysis, Wiley (1966).

COUPLED HEAT TRANSFER BETWEEN FLUID FILM
AND SOLID WALL

```
L. P. Kholpanov, T. B. Babak,
V. N. Babak, V. A. Malyusov, and N. M. Zhavoronkov
```

UDC 536.242

A numerical algorithm is proposed for solution of the coupled problem of convective heat transfer. The method was used to study two-phase heat transfer between a solid wall and a laminarly flowing fluid film for a linear temperature profile at the outer surface of the wall. A computational formula is proposed for the dimensionless Nusselt number.

In studying heat transfer in a film flowing gravitationally along a wall, the temperature at the solid-fluidfilm interface is usually assumed known and equal to a given temperature at the outer surface of the wall. This condition is satisfied in the extremely idealized case of a wall with infinitely large thermal conductivity. However, the coefficients of thermal conductivity for several polymer materials such as Teflon and vinyl are of the

Institute for New Chemical Problems, Academy of Sciences of the USSR, Moscow. Trans lated from In-zhenerno-Fizicheskii Zhurnal, Vol. 32, No. 6, pp. 1091-1097, June, 1977. Original article submitted May 26, 1976.

[^0]

Fig. 1. Dependence of dimensionless Nusselt number on x for various values of the parameter P : 1) $\log P=-\infty$; 2) $\log P=-2$; 3) $\log P=-1.5$; 4) $\log P=-1$; 5) $\log P=-0.8$; 6) $\log \mathrm{P}=-0.6$; 7) $\log \mathrm{P}=-0.4$; 8) $\log \mathrm{P}=-0.2$; 9) $\log \mathrm{P}=$ 0 ; 10) $\log \mathrm{P}=0.2$; 11) $\log \mathrm{P}=0.4$; 12) $\log \mathrm{P}=0.6$; 13) \log $\mathrm{P}=+\infty$.
same order of magnitude as that of the fluid. In the general case, such problems must be considered as coupled, where the energy equations in the fluid and solid are solved simultaneous ly using the velocity distribution in the flowing film with the temperatures and thermal fluxes being assumed equal at the interphase boundary, i.e., using boundary conditions of the fourth kind [1-3].

Such formulations of the problems were discussed in a number of papers both as internal and external problems [5,6]. Analytic methods were also proposed recently for solution of the coupled problems [7, 8].

In this paper, a numerical algorithm is proposed for solution of the coupled problem of convective heat transfer. A fluid film flows gravitationally along the surface of a vertical, infinitely wide plate of thickness b and length l. We denote the thickness of the flowing laminar fluid film by h. We choose a Cartesian coordinate system such that the x axis coincides with the interface with $x=0$ at the upper end of the plate and $x=l$ at the lower end. At the outer side of the plate $(y=-b)$ and also on the free surface of the film ($y=h$), known temperature profiles Ψ_{2} and Ψ_{1} are assigned, respectively. In the general case, the energy equations and boundary conditions in the selected coordinate system have the form

$$
\begin{gather*}
3 U\left(\frac{y}{h}-\frac{1}{2}\left(\frac{y}{h}\right)^{2}\right) \frac{\partial t_{1}}{\partial x}=a_{1}\left(\frac{\partial^{2} t_{1}}{\partial y^{2}}\right) ; \tag{1}\\
\frac{\partial^{2} t_{2}}{\partial x^{2}}+\frac{\partial^{2} t_{2}}{\partial y^{2}}=0 ; \\
t_{1}=\Psi_{1}(x) \text { for } y=h ; t_{2}=\Psi_{2}(x) \text { for } y=-b ; \tag{2}\\
t_{1}=\varphi_{1}(y), t_{2}=\varphi_{2}(y) \text { for } x=0, t_{2}=\Theta_{2} \text { for } x=l ; \\
t_{1}(x)=t_{2}(x), \lambda_{1} \frac{\partial t_{1}}{\partial y}=\lambda_{2} \frac{\partial t_{2}}{\partial y} \text { for } y=0 . \tag{3}
\end{gather*}
$$

We investigate the solution of the problem (1)-(3) under simplified boundary conditions where $\Psi_{1}=\varphi_{1}=\varphi_{2}=t_{0}=$ const, $\Theta_{2}=t_{1}$, and the function $\Psi_{2}(x)$ varies linearly from t_{0} at $x=0$ to t_{1} at $x=l$, i.e., $\Psi_{2}(x)=t_{0}+\left(t_{1}-t_{0}\right)(x /$ l).

Thes e simplifications, without changing the generality of the numerical realization of the solution for the problem of coupled convective heat transfer, can correspond to heating (cooling) of the fluid film or to vapor condensation on the solid surface with subs equent flow in film form if the effect of a change in the thickness of the latter on heat transfer can be neglected.

We convert to the dimensionless variables

$$
T_{1}=\frac{t_{1}-t_{0}}{t_{l}-t_{0}}, \eta_{1}=1-\frac{y}{h}
$$

Fig. 2. Dependence of dimensionless temperature at the phase interface on the dimensionless length x / l for $\log \mathrm{P}=0$ and various values of the parameter x : 1) $x=0.1$; 2) $x=0.16$; 3) $x=0.25$; 4) $x=0.4$; 5) $x=$ 0.63 ; 6) $x=1.0$; 7) $x=1.6$; 8) $x=2.5$; 9) $x=4.0$; 10) $x=6.3$; 11) $x=10.0$; 12) $x=$ ∞ 。
in the liquid phase and define the corres ponding variables in the solid phase in the form

$$
T_{2}=\frac{t_{2}-t_{0}}{t_{l}-t_{0}}, \quad \eta_{2}=1+\frac{y}{b}
$$

In addition, we introduce the dimensionless length $z=x / l$ along the x axis. After introduction of the dimensionless variables, we rewrite the problem (1)-(3) in the following manner:

$$
\begin{gather*}
3\left(\eta_{1}-\frac{1}{2} \eta_{1}^{2}\right) \frac{\partial T_{1}}{\partial z}=P \frac{\partial^{2} T_{1}}{\partial \eta_{1}^{2}} \\
\frac{\partial^{2} T_{2}}{\partial z^{2}}+S \frac{\partial^{2} T_{2}}{\partial \eta_{2}^{2}}=0 \tag{4}\\
T_{1}=0 \text { for } \eta_{1}=0 ; T_{2}=z \text { for } \eta_{2}=0 \\
T_{1}=T_{2}=0 \text { for } z=0 ; T_{2}=1 \text { for } z=1 \tag{5}\\
T_{1}=T_{2}, \frac{\partial T_{1}}{\partial \eta_{1}}=-x \frac{\partial T_{2}}{\partial \eta_{2}} \text { for } \eta_{1}=\eta_{2}=1 \tag{6}
\end{gather*}
$$

where P, S, and x are dimensionless parameters. For numerical solution of this problem by the mesh method, we selected a set of points with the coordinates $\eta_{i}=(1 / 2+m) d, z=(1 / 2+n) d$, where $n_{2} m=-1, \ldots, M$ and $d=1 / M, i=1,2$. The derivatives in Eqs. (4) were replaced by central differences using a four-point implicit scheme. The resultant difference analog was solved by the sweep method for parabolic equations and by the vector sweep method for elliptic equations. To better approximate the boundary conditions in the fluid and gas phases, two fictitious points, $(-h / 2,1+h / 2)$, falling outside the segment [0,1], were introduced for the variable η. The temperature at the interface between the fluid film and the solid wall was calculated as the mean value of the temperatures at the points $M-1$ and M :

$$
\begin{equation*}
f(z)=\left(T_{1, M}+T_{1, M-1}\right) / 2=\left(T_{2, M}+T_{2, M-1}\right) / 2 \tag{7}
\end{equation*}
$$

where the second subscript in the temperature notation corresponds to the labelling of the point. One of the basic difficulties in the solution of the coupled problems lies in the resolution of boundary conditions of the fourth kind, i.e., the conditions for coupling parabolic equations with elliptic equations. There are a number of practical methods for solving such problems [3,7,8]. In this report, we propose to accomplish this in the following way.

We express the temperature $f(z)$ at the interface through the temperatures at the points $M-2, M-1$, and M :

$$
\begin{equation*}
f(z)=\frac{-T_{1, M-2}-9 T_{1, M}+18 T_{1, M-1}-x T_{2, M-2}+18 T_{2, M-1}-9 x T_{2, M}}{8+8 x} \tag{8}
\end{equation*}
$$

Fig. 3. $\mathrm{X}-\mathrm{Y}$ plane, $\mathrm{X}=\log \mathrm{P}, \mathrm{Y}=\log x$. At points to the left of curve 1 , the resistance to heat transfer is concentrated in the solid phase. At points to the right of curve 2 , the resistance is concentrated in the liquid phase.

In writing down Eq. (8), the coupling conditions (6) were used where the derivatives were replaced by difference analogs, which, for example, have the form

$$
\partial T_{1} / \partial \eta_{1}=\left(T_{1, M-1}+9 T_{1, M}-18 T_{1, M-1} \div 8 f\right) /(12 h) \div 0\left(h^{3}\right)
$$

for the liquid phase. Since this problem is solved by an iteration method, the temperature at the phase interface is assigned arbitrarily in the first iteration. Let the temperature at the interface be $f_{i}(z)$ after the i-th iteration. Adjustment factors, and cons equently the temperature fields, are determined by means of Eq. (7) and the boundary conditions (5) and (6). A new temperature at the interface, i. e., the function $f_{i+1}(z)$, is determined through Eq. (8) from the temperature fields found for the fluid film and solid, respectively. The calculation is considered finished if the inequality $\left|f_{i+1}(z)-f_{i}(z)\right|<0.05$ is satisfield.

The proposed numerical algorithm was used to solve the problem (4)-(6) on a BÉSM-6 computer . Computing time for a single variant and a step $d=0.1$ was of the order of one minute.

We define the dimensionless Nusselt numbers for the first and second phases in the following manner:

$$
\begin{equation*}
I=\left(\lambda_{1}\left(t_{l}-t_{0}\right) / / h\right) \int_{0}^{1} \frac{\partial T_{1}}{\partial \eta_{1}} d z=\left(\lambda_{2}\left(t_{l}-t_{0}\right) l / b\right) \int_{0}^{1} \frac{\partial T_{2}}{\partial \eta_{2}} d z . \tag{9}
\end{equation*}
$$

Between $N u_{1}=\int_{0}^{1} \frac{\partial T_{1}}{\partial \eta_{1}} \mathrm{dz}$ and $N u_{2}=\int_{0}^{1} \frac{\partial T_{2}}{\partial \eta_{2}} \mathrm{dz}$ there is the relation

$$
\begin{equation*}
\mathrm{Nu}_{1}=\kappa \mathrm{Nu}_{2} \tag{10}
\end{equation*}
$$

In the general case, the solution of the problem (4)-(6) depends on the three independent parameters S, P, and x. However, the effect of S can be neglected if the inequality $S \gg 1$ is satisfied [for actual tubing of length l meters, $\mathrm{b}=\delta \cdot 10^{-3} \mathrm{~m}$ and $\mathrm{S}=\left(l \cdot 10^{3} / \delta\right)^{2} \gg 1$ in order of magnitude, where l and δ are of the order of one]. Consequently, the solution of the problem (4)-(6) depends on the two parameters p and x under actual geometric dimensions.

Calculated results for the dimensionless number $N u_{1}$ as a function of χ are shown in Fig. 1 for various values of the parameter P. For any fixed value of the parameter P there exist numbers $x_{\text {min }}$ and $x_{\max }$ such that the relation

$$
\begin{equation*}
\mathrm{Nu}_{1}(\%)=\kappa / 2 \tag{11}
\end{equation*}
$$

is valid when the inequality $x \leq x_{\text {min }}$ is satisfied. Graphically, this means that the curves $\mathrm{Nu}_{1}(x)$, for sufficiently small x, practically coincide with the limiting curve 1 in Fig. 1 for which $\log P=-\infty$ (we limit ourselves to 10% accuracy in the following). Then the surface temperature $T_{S}(z)=0$ at any point on the interface. The physical significance of Eq. (11) is clear from the definitions (9) and (10); when $\mathrm{T}_{\mathbf{S}}=0$, the equality $\partial \mathrm{T}_{2}$ / $\partial \eta_{2}=z$ is valid and therefore

Fig. 4. Dependence of dimensionless function $p^{1 / 3} \mathrm{Nu}_{1}$ on the variable $P^{1 / 3} x$ for $\log P \leq 0$ (curve 2). Curve 1 is the function $P^{1 / 3} x / 2$.

$$
\begin{equation*}
\mathrm{Nu}_{2}(x)=\frac{1}{2} \quad \text { or } \quad \mathrm{Nu}_{1}=\frac{x}{2} \tag{12}
\end{equation*}
$$

Equation (12) means that the resistance to heat transfer is totally concentrated in the solid phase.
At large values of x, the function $\mathrm{Nu}_{1}(x)$ tends to a limiting value and differs from it by less than 10% when $x \geq x_{\text {max }}$. In this case, the temperature at the phase interface agrees with the assigned temperature at the outside of the wall. Resistance to heat transfer is concentrated in the fluid and the problem can only be solved in the film under the boundary condition $T_{S}(z)=\Psi_{2}$. The case $\Psi_{2}=z$ is discussed here. It is obvious that the properties indicated above will also be valid for an arbitrary function $\Psi_{2}(z)$. Calculations of the function $\mathrm{T}_{\mathrm{S}}(\mathrm{z})$ for a number of values of x in the interval ($x_{\min }, x_{\max }$) are shown in Fig. 2 for $\log P=0$.

Values of $x_{\min }$ and $x_{\max }$ can be obtained from Fig. 3 which is a plot of the $(X-Y)$ plane where $X=$ $\log x$ and $Y=\log P$ with $X_{\min }$ and $X_{\max }$ being approximated in the following manner :

$$
\begin{gather*}
X_{\min }=-0.8, \quad X_{\max }=1 \text { for } \lg P \geqslant 0 \tag{13}\\
X_{\min }=-0.8-\frac{\lg P}{3}, \quad X_{\max }=1-\frac{\lg P}{3} \quad \text { for } \lg P<0
\end{gather*}
$$

As is clear from Fig. 1, in the region of the $X-Y$ plane where $\log P \geq 0.6$, the functions $N u_{1}(x)$ corresponding to different P cease to depend on the parameter P and practically concide with the limiting curve 13 for which $\log P=\infty$. When $\log P=\infty$, the film temperature for any value of z is

$$
\begin{equation*}
T_{1}\left(z, \eta_{1}\right)=\eta_{1} T_{S}(z), \text { where } T_{S}(z)=\frac{x}{1+x} z \tag{14}
\end{equation*}
$$

Substituting the distribution (14) into Eq. (9), the analytic relation

$$
\begin{equation*}
\mathrm{Nu}_{1}(x)=\frac{1}{2}\left(\frac{x}{1+x}\right) \tag{15}
\end{equation*}
$$

can be obtained for the Nusselt number for the limiting curve 13. For small values of P, there is a thin thermal boundary layer $\sqrt[3]{\mathrm{Pz}} \ll 1$ in the neighborhood of the solid wall. In this case, one can show that the equations

$$
\begin{gather*}
T_{s}(z)=(\alpha x z \sqrt[3]{P z}) /(1+\alpha x \sqrt[3]{P z}) \tag{16}\\
\mathrm{Nu}_{1}(x)=F(x \sqrt[3]{P}) / \sqrt[3]{P}
\end{gather*}
$$

where $\alpha=1$ as shown by calculation, are valid. Consequently, if one plots the quantity $P^{1 / 3} N u_{1}$ on the ordinate and the quantity $x \mathrm{P}^{1 / 3}$ on the abscissa, one merely need know the function $\mathrm{F}\left(x_{\left.\mathrm{P}^{1 / 3}\right)}\right.$ in order to obtain a solution. It is shown in Fig. 4 (curve 2). The equality $\mathrm{P}^{1 / 3} \mathrm{Nu}_{1} \simeq \mathrm{P}^{1 / 3} x / 2$, which is equivalent to Eq. (11), is satisfied when $\log \left(x P^{1 / 3}\right) \leq-0.8$. The function $P^{1 / 3} \mathrm{Nu}_{1} \rightarrow 0.6$ when $\log \left(x \mathrm{P}^{1 / 3}\right) \geq 1$. As shown by calculated results, Eq. (16) is valid everywhere when $\log P \leq 0$. Cons equently, when $\log P \leq 0$, the limiting points $X_{m i n}$ and $X_{\max }$ in the $\mathrm{X}-\mathrm{Y}$ plane must be located on the lines $\mathrm{X}=-0.8-\mathrm{Y} / 3$ and $\mathrm{X}=1-\mathrm{Y} / 3$ as is evident from Eq. (13) and Fig. 3.

Since the solution of the problem (4)-(6) for $\log P \leq 0$ is self-similar as shown in Fig. 4 and the maximum differ ence between curves in Fig. 1 for $\log P \geq 0$ is 20%, the dimensionless Nusselt function is approximated within 10% for any x and P by the following equations:

$$
\mathrm{Nu}_{1}=\left\{\begin{array}{l}
0.55\left(\frac{x}{1+x}\right) \text { for } \lg P \geqslant 0 \tag{17}\\
0.55\left(\frac{x \sqrt[3]{P}}{1+x \sqrt[3]{P}}\right)\left(\frac{1}{\sqrt[3]{P}}\right) \text { for } \lg P \leqslant 0
\end{array}\right.
$$

We make some estimates of the parameters P and K in order to see what region of the $X-Y$ plane.(Fig. 3) corresponds to actual values of the Reynolds number.

Film motion can be considered laminar if $\mathrm{Re}<400$ and then film thickness is determined by the Nusselt formula $h=1.45 \Theta(\mathrm{Re})^{1 / 3}$, where $\Theta=\left(\nu_{1}^{2} / \mathrm{g}\right)^{1 / 3}[9]$. The thermophysical characteristics of water and organic fluids are constant over a broad range of temperatures $\left(180^{\circ} \mathrm{C}>t>20^{\circ} \mathrm{C}\right)$ and are, in order of magnitude, $\lambda_{1} \simeq 0.4 \mathrm{~N} /(\mathrm{sec} \cdot \mathrm{deg}), \mathrm{C}_{p} \simeq 4000 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{deg})$, and $a_{1} \simeq 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}$. Only viscosity undergoes a marked variation with temperature with © varying from $7 \cdot 10^{-5} \mathrm{~m}$ at $20^{\circ} \mathrm{C}$ to $10^{-5} \mathrm{~m}$ at $180^{\circ} \mathrm{C}$. For irrigation channels with dimensions $i>0.1 \mathrm{~m}, \mathrm{~b}=\delta \cdot 10^{-3} \mathrm{~m}(\delta>1)$, the order of magnitude of P is $\mathrm{P} \sim\left(10^{2} l /(0) /(\mathrm{Re})^{4 / 3}, \mathrm{P}\left(0.05-10^{5}\right)\right.$. The value of the second parameter x also varies over a broad range and can take on any value in the interval ($x_{\min }, x_{\max }$) and outside it. For example, where $x \sim 6\left(\Theta \cdot 10^{5}\right)(R e)^{1 / 3} / \delta$ formetal tubing with $\lambda_{2} \sim 40 N /(s e c$. $\operatorname{deg}), x \sim 3\left(\Theta \cdot 10^{3}\right)\left(\mathrm{Re}^{1 / 3} / \delta\right.$ for such materials as Teflon and vinyl with $\lambda_{2} \sim 0.2 \mathrm{~N} /(\mathrm{sec} \cdot \operatorname{deg})$. Thus, it is often necessary to consider the thermal interaction of the phas es even for laminar motion in the film flow ($\operatorname{Re}<400$).

NOTATION

t_{1}, t_{2}, temperatures; $T_{1}, T 2$, dimensionless temperatures; λ_{1}, λ_{2}, coefficients of thermal conductivity; x, y, spatial coordinates; l, plate length; b, plate thickness; h, film thickness; $\eta_{1}, \eta_{2}, z=x / l$, dimensionless coordinates; a_{1}, coefficient of thermal diffusivity; ν_{1}, kinematic viscosity; g, gravitational acceleration; U , mean fluid velocity; dimensionless parameters: $\mathrm{P}=l /(\mathrm{hPe}), \mathrm{S}=(l / \mathrm{b})^{2}, \chi=\left(\lambda_{2} \mathrm{~h}\right) /\left(\lambda_{1} \mathrm{~b}\right)$; $N u_{1}$, Nuu_{2}, Nusselt numbers; q, irrigation density; $\operatorname{Re}=q / \nu_{1}$, Reynolds number; $\operatorname{Pe}=q / a_{1}$, Peclet number; $I=\lambda_{1} \int_{0}^{l}\left(\partial t_{1}\right)$ Эy)dx, heat flux across phase interface. Indices: 1, liquid phase; 2, solid phase.

LITERATURE CITED

1. Yu. E. Lukach, L. B. Radchenko, and Yu. M. Tananaiko, Khim. Tekhnol., 1, 49 (1972).
2. D. R. Chapman and M. W. Rubesin, JAS, 16, No. 9 (1949).
3. A. V. Lukov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967).
4. D. C. Baxter and W. C. Reynolds, JAS, 25, No. 6 (1958).
5. G. T. Aldonin, K. M. Zhuk, and V. I. Shlyakhtina, in: Heat and Mass Transfer [in Russian], Vol. 1, Energiya, Moscow (1968).
6. V. R. Shelyag, Inzh.-Fiz. Zh., 12, No. 2 (1967).
7. V. A. Aleksashenko and A. A. Aleksashenko, in: Heat and Mass Transfer [in Russian], Vol. 1, Energiya, Moscow (1968).
8. V. A. Aleksashenko, Inzh.-Fiz. Zh., 14, No. 1 (1968).
9. E. G. Voronts ov and Yu. M. Tananaiko, Heat Transfer in Fluid Films [in Russian], Tekhnika, Kiev (1972).

[^0]: This material is protected by copyright registered in the name of Plenum Publishing Corporation. 227 West 17 th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 7.50$.

